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The motion of a slender axisymmetric rod-like particle is investigated theo- 
retically for translation through a quiescent second-order fluid and for rotation 
in a simple shear flow of the same material. The analysis consists of an asymptotic 
expansion about the limit of rheologically slow flow, coupled with an application 
of a generalized form of the reciprocal theorem of Lorentz to calculate the force 
and torque on the particle. It is shown that an arbitrarily oriented particle with 
fore-aft symmetry translates, to a first approximation, a t  the same rate as in 
an equivalent Newtonian fluid, but that the motion of particles with no fore-aft 
symmetry may be modified a t  the same level of approximation. In  addition, it is 
found that freely translating particles with fore-aft symmetry exhibit a single 
stable orientation with the axis of revolution vertical. In  simple shear flow a t  
small and moderate shear rates, the non-Newtonian nature of the suspending 
fluid causes a drift through Jeffery orbits to the equilibrium orbit C = 0 in which 
the particle rotates about its axis of revolution. At larger shear rates, the particle 
aligns itself in the direction of flow and ceases to rot@e. Comparison with the 
available experimental data indicates that the measured rate of orbit drift may 
be used to determine the second normal stress difference parameter of the second- 
order fluid model. Finally, in an appendix, some preliminary observations are 
reported of the motion of slender rod-like particles falling thmough a quiescent 
viscoelastic fluid. 

1. Introduction 
It is becoming apparent that the motion of a submerged body in a viscoelastic 

ambient fluid is often fundamentally different from its motion in a Newtonian 
fluid. Examples of such differences include the lateral migration of rigid particles 
in nonlinear shear flow a t  very small Reynolds number (Karnis & Mason 1967), 
the drift of rigid non-spherical particles towards preferred equilibrium orbits in 
simple shear flow (Gauthier, Goldsmith & Mason 1971) and the existence, a t  
larger shear rates, of an equilibrium orientation with a complete lack of rotation 
for slender rod-like particles and very flat disks (Bartram & Mason 1974). Very 
few of these phenomena have been adequately investigated theoretically. Indeed, 
the only external flow solutions a t  present available are for simple translation 
and/or rotation of a rigid sphere under the simplifying approximation of rheo- 
logically slow flow (Leslie 1961; Caswell & Schwarz 1962; Giesekus 1963), and the 
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corresponding uniform flow past a circular cylinder, which was recently obtained 
by Mena & Caswell(l974, private communication). The key result of these latter 
investigations is that both the drag and the torque exerted on the body occur a t  
second order with respect to the ratio of the relaxation time scale of the material 
to the convective time scale of the motion, in spite of the fact that the velocity 
and pressure fields are already altered in a non-trivial way a t  first order. 

The present paper represents an initial study whose purpose is the generaliza- 
tion of previous theoretical work to the case of straight slender axisymmetric 
particles. The analysis is based on the approximation of rheologically slow flow 
and therefore employs the Rivlin-Erickson nth-order fluid model. Two separate 
cases are considered: translation (or sedimentation) through a quiescent ambient 
fluid and the rotation of a neutrally buoyant particle in simple (linear) shear flow. 
The chief practical interest in the sedimentation calculation is the possibility that 
the non-Newtonian characteristics of the ambient fluid may lead to intrinsically 
preferred equilibrium orientations. In addition, the analysis makes possible a 
partial assessment of the role of particle geometry in determining the presence or 
absence of first-order contributions to the hydrodynamic force and torque on 
the particle. The case of particle rotation in shear flow, which was first discussed 
(qualitatively) by Saffman (1956), is a logical first step in understanding the 
rheological behaviour of a dilute viscoelastic suspension of rod-like particles 
which is undergoing simple bulk shear flow. 

The analysis is formally carried out as a perturbatidn expansion in the small 
parameter for rheologically slow flow, which is the ratio of the natural relaxation 
time of the ambient fluid to the convective time scale of the motion. At first order, 
the problem reduces to the case of Newtonian creeping flow, and in order to main- 
tain maximum flexibility with respect to the detailed geometry, the solution is 
represented via the approximate slender-body theory ?or low Reynolds number 
flow (cf. Batchelor 1970; Cox 1970a). At second order, corresponding to thesecond- 
order fluid approximation, the velocity and pressure fields may also be calculated 
using the slender-body approach. However, in the present work, we obtain only 
the force and torque on the particle, using a generalized version of the reciprocal 
theorem for low Reynolds number flow. As we shall demonstrate, these second- 
order contributions to the force and torque can be calculated knowing only 
the Newtonian velocity and pressure fields. 

The approximation of nearly Newtonian slow flow severely limits the magni- 
tude of the instantaneous, non-Newtonian contributions to the particle’s motion. 
Nevertheless, these small effects may still have a large accumulative influence 
on the particle orientation in sedimentation and on the orbit of rotation in shear 
flow. In  each instance, the orientation in the Newtonian case is fully determined 
by the orientation of the particle a t  some initial time; no intrinsic preference is 
shown for any orientation or any orbit. In these circumstances, small non- 
Newtonian contributions can have a profound influence, ultimately causing the 
particle to attain a steady-state sedimentation orientation or a steady-state shear 
orbit which is completely independent of the initial state. 

In  3 2, we define and set up the general problem in terms suitable for solution 
by the slow-flow perturbation expansion. This is followed in 3 3 by a brief review of 
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the basic Newtonian slender-body solutions for uniform translation and rotation 
in simple shear flow. Section 4 is concerned with the general scheme for applica- 
tion of the generalized reciprocal theorem to obtain the first (second-order fluid) 
non-Newtonian corrections for the force and torque acting on the particle. The 
remainder of the paper reports the application of the general formulae to calculate 
the hydrodyriamie contributions to the force and torque acting on a rigid axi- 
symmetric particle in the specific cases of translation with arbitrary orientation 
through a quiescent fluid and rotation in a simple shear flow. In  the latter case, 
a detailed comparison is made with the recent experimental observations of 
Mason and co-workers (Karnis & Mason 1967; Gauthier et al. 1971; Bartram & 
Mason 1974). Finally, in an appendix we report the results of some simple 
observations of the translational and rotational motion of slender cylinders and 
circular cones falling under the action of gravity through a quiescent viscoelastic 
fluid. 

2. The general problem 
We consider a straight, slender, axisymmetric, rigid body of length 21 which 

has a cross-sectional radius R(x,), with x,  measured along the axis of revolution 
from - 1 to + 1. The radius R is assumed to vary continuously with xland to satisfy 
the additional constraints R(Z) = R( - 1) = 0 and R(xl)/21 + 1 for - 1 < x,  < 1. We 
shall use Cartesian reference axes (x l ,  x,, x3) $xed in the purticle and denote the 
undisturbed flow relative to these as - U(x, t ) .  The time dependence of U will 
be assumed to  result in the present circumstances entirely from time-dependent 
changes in particle orientation rather than time variations in the flow itself. The 
suspending fluid is assumed to  be incompressil$e and non-Newtonian, and is 
modelled as a Rivlin-Erickson second-order fluid in order to be consistent 
with the basic assumption of rheologically slow flow. Hence, in dimensionless 
terms, the bulk stress is given by 

T = - P I  + A1 + h[(A1)2 +glA,] + O(h2),  ( 1 )  

with A, representing the nth-order Rivlin-Erickson tensor. The components of 
A, and A,, respectively, are 

a:;) ui, j + uj, i 
a,.. - - du&/dt + ukaz, + a& uk, + a!; uk, i .  and 23 

The dimensionless parameters h and el are defined as Q3 U/pZ and Q,/Q3, in which 
,LA is the zero-shear viscosity, Q2 and Q3 the zero-shear normal stress coefficients 
and U a characteristic velocity scale based on the undisturbed velocity field. 

The dimensionless parameter h is a measure of the intrinsic relaxation time for 
the fluid relative to the dynamic scale l /U .  In  the present work we consider h to 
be small so that the constitutive relationship (1) differs only slightly from that 
for a Newtonian fluid. It is in this sense that we call the bulk motion rheologically 
slow. I n  addition, we assume that the fluid motion is also dynamically slow so 
that inertial effects may be neglected. More precisely, we assume that Re < h + 1 
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so that the creeping-motion velocity and pressure fields are primarily modified 
by nonlinear effects associated with non-zero values of h rather than dynamic 
inertia effects associated with non-zero values of the Reynolds number. Hence 
we seek solutions for u and p in the asymptotic form 

as h+O. 
u = uo+hu,+ ... 
p = po+hpl+ ... 

Substituting these expansions into the equations of motion and continuity, 
neglecting the inertia terms and equating like powers of h in the remaining terms, 
we obtain the governing equations at O(1) and at O(A):  

v2uo-vpo = 0, v . u o  = 0, (3) 
V 2 ~ 1 - V p 1  = -V.[(AJ2+~1A2]u=ao, V . U ,  = 0. (4) 

The symbol [ in (4) signifies that the included expression is to be evaluated 
using the zeroth-order velocity field uo. It is convenient to express uo as the sum 
of the undisturbed velocity field - U(x, t )  and a disturbance field + vCo)(x, t ) .  
Provided that U(x, t )  satisfies (3), as we shall assume, the Newtonian contribution 
to the disturbance velocity field is obtained as the solution of the problem 

with boundary conditions 
(5) VZV(0) - v p  = 0, v . $0) = 0 

0 as r-foo, 

+ U(x, t )  for x on the surface S of the particle. 

3. The Newtonian solutions 
The linear problem posed by ( 5 )  and (6) is solved most conveniently, for the 

present purposes, using the standard methods of slender-body theory for low 
Reynolds number flows. In  this approach, an approximation to the disturbance 
flow is obtained by modelling the effect of the actual particle by a distribution of 
force, source, force-dipole and higher-order singularities spread along the 
particle’s axis of revolution. When the undisturbed velocity field evaluated along 
this axis is non-zero, as we shall assume, the disturbance velocity field is domin- 
ated by the force (Stokeslet) singularities. The unknown distribution of Stokeslet 
strength is determined by the requirement that - V ( O )  + U be zero a t  the body 
surface. The resulting (dimensionless) zeroth-order velocity field, in terms of 
the Cartesian co-ordinates fixed in the particle, can be expressed as 

in which F(x‘, t )  is the Iine density of Stokeslet strength non-dimensionalized 
with respect to ,MU, X; = Silx’ and 1x1 = {r2 + (5, - x‘)~}*, with r = (x: + xi)&. As 
we have already noted, the dependence on t occurs because of the rotation of the 
particle, and hence of the Cartesian co-ordinates which are fixed in the particle, 
with respect to fixed laboratory co-ordinates in which the undisturbed velocity 
field is assumed to be steady. The specific form of Fi depends both on the form of 
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FIGURE 1. A typical axisymmetric particle sedimepting through a quiescent fluid. 

the undisturbed field evaluated on the particle axis and on the detailed particle 
geometry. However, Batchelor (1970),  Cox ( 1 9 7 0 4 ,  Tillett (1970) and others 
have shown that the Stokeslet strength distribution can be expressed as an 
infinite series in increasing powers of (lne)-l: 

= (In €)-Iflo) + (lne)-2f11) + . . . , (8) 
where e ( = R,/21) is the small parameter of slender-body analysis. Here R, is 
a length scale representative in some way of the values of R over the length of the 
body. Higher-order singularities and further corrections to the Stokeslet distribu- 
tion occur at O(e2).  The functions fi(O), fjl) and fi2’ have been evaluated by Cox 
( 1 9 7 0 ~ )  for a general linear undisturbed velocity distribution. Most significant is 
the result, also given by Batchelor and others, that the dominant term in the 
Stolteslet expansion is independent of the detailed particle geometry. Results of 
considerable generality with respect to particle geometry are therefore possible. 

When - U is a vector of uniform direction and constant magnitude along the 
particle’s axis of revolution, it is easily shown (cf. Batchelor 1970) that 

fp = 274 ,  fp’ = a d 4  (i = 2 ,3 ) .  ( 9 )  
This is the case relevant to the sedimentation of an arbitrarily oriented particle 
without rotation at  a velocity U* through an otherwise quiescent fluid as sketched 
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FIGURE 2 .  A typical axisymmetric, neutrally buoyant particle subjected to a 
simple linear shear flow. 

in figure 1 .  The velocity components l& non-dimensionalized by the charac- 
teristic velocity U = U*, are simply 

U, = cos a, U, = - sin a. (10) 

The second case of interest in the present context is the rotation of  a neutrally 
buoyant axisymmetric particle in the undisturbed linear shear flow 

V = yi, (11) 

expressed relative to a fixed laboratory co-ordinate system (x, y,x) and non- 
dimensionalized with respect to the characteristic velocity scale U = yl, in which 
y is the shear rate. As shown in figure 2 ,  the particle orientation is completely 
specified, relative to this fixed system, by the polar angles 8, and of the axis of 
revolution. For convenience, the instantaneous particle-fixed co-ordinates 
(x,, x,, xg), also shown in figure 2 ,  are chosen such that 

i, = k x i,, i, = - i, x i,. 

The symmetry axis of the particle is assumed to be rotating with dimensionless 
angular velocities w2 and wg as a result of the interactions of the particle with the 
surrounding suspending fluid. Hence the undisturbed velocity field (1 i),  
re-expressed in the particle-fixed co-ordinates, is simply 

Ui = Aijxj (i = 1 , 2  or 3), ( 1 2 )  
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where the matrix A is defined by 

- sin2 8, sin dl cos #, 
A = - sin 8, cos 8, sin #, cos #, + w3 

- sin 8, cos 8, sin #, cos #, - w3 

- cos2 8, sin #, cos #1 

+ sin 8, cos2 #, - w2 + cos 8, (3082 #, 
- sin 8, sin2 4, + w2 

- cos 8, sin2 #, 
- sin 4, cos #, 

[ 
Along the particle’s axis of revolution (x2  = x3 = 0,  - 1 < x, < 1 )  the undisturbed 
velocity distribution is thus 

( 1 3 )  

( 1 4 )  

I U, = - sin2 8, sin 4, cos #,xl, 
U2 = ( - sin 8, cos 8, sin 4, cos 4, + w3)  xl, 
U3 = ( + sin 8, cos2 #, - w2)  x,. 

For the general case 

U(X, t)lx=R = U(x1, t )  = [a(t)x,, b( t )x , ,  c(t)x,l, 
of which (13) is a specific example, Batchelor (1970) has shown that the dominant 
coefficients fro) of the expansion (8) are 

fi0)(x‘t) = Bna(t)x’, f,O)(x’, t )  = 47rb(t)x’, fi0)(x’, t )  = 47rc(t)x’. ( 1 5 )  

The coefficientsa(t), b( t )  andc(t) are dependent on time owing to the implicit time 
dependence of el, #,, w2 and w3. 

The analysis which follows will consider only the non-Newtonian effects result- 
ing from the disturbance velocity field generated by this lowest-order geometry- 
independent approximation ( 1 5 )  of the Stokestet distribution. A n  exceptional 
case in which the first contributions to the distribution of singularities along the 
particle’s axis are O(e2) ,  rather than O(lnc)-l, occurs when the undisturbed 
velocity vector vanishes identically: a(t) = b ( t )  =_ c( t )  =,O. It will be shown later 
that 

w3 = sin 8, cos 8, sin #1 cos #, + O(A)  and w2 = sin 8, cos2 4, + O(A),  

so that b = c = 0 to first order in A. Thus the practical significance of the excep- 
tional case is the condition I#, - 4n-I > O(c21n e) ,  which must be satisfied in order 
that the dominant singularity is the Stokeslet distribution (15), as we have 
implicitly assumed. In the present work, we limit our considerations to situations 
in which this condition is satisfied. 

4. The first non-Newtonian contributions to the force and torque on 

In  this section we consider the method of calculating the first (‘second-order 
fluid’) non-Newtonian contributions to the force and torque acting on the 
particle. Rather than attempting to evaluate these quantities directly by solving 
(4) for the corresponding O ( h )  velocity and pressure fields, we use the generalized 

the particle 
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reciprocal theorem of Lorentz. We shall see that this method provides the O(h)  
contribution to the force and torque on each particle without the need for an 
explicit solution for u, or p, .  A general description of the method has been given 
by Cox & Brenner (1968) and, more recently, by Ho & Leal (1974). 

We begin by defining the tensor 

7(1) = - p ,  I + vu, + (VUJT, (16) 

in which p ,  and u, are the O(h)  contributions to the pressure and velocity fields 
near a particle. In  terms of +), the governing equation (4) is simply 

T y j  +H, = 0, (17) 

with Q = L~[(A\O')~ + (18) 

and the O(h)  contribution to the hydrodynamic force on the particle is given by 

3'yj = ,uU2IS ni[r(l) + + e1A21ij dA. (19) 

Here, n is the outward normal to the particle and integration is over its surface. 
The superscript (0 )  on (A,), and A, in both (18) and (19) signifies that these quan- 
tities are to be evaluated using the O( 1) velocity field u,,. In  view of the definition 
(1 6), evaluation of 3'y' using (19) would appear to re'quire an explicit knowledge 
of the O ( h )  velocity and pressure fields. However, using the reciprocal theorem, 
it is straightforward to show (see Cox & Brenner 1968; Ho & Leal 1974) that 

f i  f i  

in which V, is the whole volume of fluid surrounding the particle. As we have 
already implied, the function Hk depends only on the O(1) components of the 
velocity field. The tensor function wjk satisfies 

a2Wiklax; - aqklaxi = 0, 

That is, for each fixed value of k, Wik and qk are the creeping-motion velocity and 
pressure fields resulting from simple translation of the particle with unit velocity 
in the k ,direction through an otherwise quiescent Newtonian fluid. Referring to 
(7)-(9), the solution of (21) is simply 

hk x', t )  ( X i  - x i )  (Zj - x;)P5(x1 ,  "'I 
Wik = 'sl , r+ + ax', 

877 - 1x1 3 

with (23) 
277(lne)-l aik, k = 1, 

4n(ln e)-l Sib, k = 2,3. 
Pt  = 
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Hence, given the O( 1) velocity distribution uo, the function Hl may be calculated 
using (18), and the force then evaluated from (19) with the first term replaced 
by (20) and wik given by (22) and (23). 

In  a similar manner the torque G(1) on the particle at  O(h)  may also be calcu- 
lated from the O(1) velocity and pressure fields. The basic equation for the 
torque is 

in which r is the position vector from the centre of the particle to its surface. In  
this case, the reciprocal theorem may be used to re-express the term involving 
7& in the form 

(25)  ls 6ijk r j  nL d~ = - s, (ti,+&) dQ. 

The function tSk satisfies 

d2t ik ldX$-dQkldXj  = 0, ) 

k = 1,2 ,3 .  (26) I dt,,,dx, = 0, 

- t O  as r-tco, 
= “ i k j x j  on the body surface 8, 

with 

For a slender body, the surface S corresponds, to a first approximation, to 
x2 = x3 = 0. Therefore, in this case ti, = Wik, as given in (22), with 

E,k = €,kl(47r(lnE)-?x’). (27) 
As before, the reciprocal theorem (25) provides a method for calculating the 
torque on the particle a t  O(h)  from a knowledge of the pressure and velocity 
fields at O(1). 

In  calculating Hi from (18) for an arbitrary undisturbed velocity field, it  is 
convenient to use the decomposition of uoi given in (7). The various integrals 
with respect to X I  over the range - 1 to 1 which are required for the disturbance 
field vioJ and its derivatives in (18) can be evaluated analytically both for 
& = constant and for F! = constant x X I .  As indicated by (8), (9) and (15), these 
two cases are sufficient for simple translation with no rotation and for simple shear 
flow. As we shall see, in the present analysis we need only the limiting forms 
of these integrals for r < 1. These asymptotic forms are listed in tables 1 and 2.  

Finally, it is perhaps worth noting that all of the general formulae (19)-(21) 
and (24)-(26) are equally applicable to particles of arbitrary shape. The chief 
simplifications which occur for slender rod-like particles are inherent in the solu- 
tion forms (7) and (22) for uoi, Wik and ti!, and in the fact that the volume integrals 
in (20) and (25) are dominated by contributions from the region nearest the axis 
of the particle, specifically for - 1 < x1 < 1 and r < 1. 

5. Translation through a quiescent fluid 
In  this section we &st consider the application of (19) and (20) to calculate 

the force acting on an arbitrarily oriented straight slender particle which is trans- 
lating without rotation through a quiescent fluid under the action of an externally 
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Asymptotic form 
( - i < z < l ; r < i  

except for r < z - 1, x + 1) 

-In [rz/4( 1 - zz)] 

Integrand 

2/r2 
A 1/14 
B 1/1zI3 c ( x - z 7 / i 4 3  - 2 4  1 - 39)  

E +I5 
F (% - s 7 / 1 4 5  

H (2-.')"[215 - 2 4  1 - 2 2 )  

I 1/147 

D ( z - z 7 2 / 1 4 3  - 2 -In [ rz /4(  1 - s2)]  
4/3r4 

G (2-2/)2/1215 2/3r2 
- ( 6 1 ~ +  2x3)/3( 1 -z')~ 

16/15r6 
--(ioiz+201%3+226)/5(i - ~ 2 ) 5  J ( z - x ' ) / ~ x [ ~  

L ( z -z ' )~ /~z~ '  - ( 6 1 ~ + 2 ~ ~ ) / 3 ( 1 - s ~ ) ~  
K (x-s')2/147 4/ 1 5r4 

M (Z-Z')"/[Z~' 2/5r2 

TABLE 1. Here (21 {r2 + (d- x)2}&, x zl, z' si, r2 xi; + z;, 

applied body force. Subsequently, we investigate the stability of the various 
possible orientations by using (24) and .(as) to determine the external torque 
which would be necessary to maintain the particle in a particular orientation. 

The force on the particle 
Batchelor (1970) has shown that the force acting on a slender particle of arbitrary 
cross-section translating in creeping flowfhrough a Newtonian suspending fluid, 
as shown in figure 1, is 

8rplU" sin a 
In 6 

pp N - + O((ln~)-~) .  

The first non-Newtonian contributions F:lJ to  the force are obtained from 
(19) and (20) in the combined form 

The vector function H which appears in the first term is most conveniently 
expressed in the form 
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in which the coefficients C,, D,, E,, and Gjk depend solely upon the integrals 
A ,  B, C ,  ..., M (see table 1) . t  Similarly, the tensoral velocity field w [see (22)], 
which is also required for the first term of (29), may be written as 

A .  

Wi, = (P$/87r) Gik, 

where G is the symmetric second-order tensor 

A + D  x,C x3c ' 

x,C A + x i B  x,x,B 
x,C xzx3B A + x i B .  

Finally, it  is necessary to have definite expressions for the various components 
of the unit normal n. Here, we adopt the general form 

n1 = G1(xl), n2 = Gz(xl) cos q5, n3 = 6 3 ( ~ 1 )  sin 4, (32 )  
in which q5 is the polar angle measured counterclockwise (towards x3) from the 
x, axis (cf. figure 1). The precise form for the functions 6ii(x1) depends, of course, 
on the detailed geometry of the particle. However, it is possible to characterize 
the general properties of the Si(x1). In  particular, provided that the particle is 
slender and axisymmetric as we have assumed, it may be shown that 

A n2 = 2, = O(l) ,  

whereas G1 is small, O(c) .  In  addition, for particles with fore-aft symmetry, G1 is 
odd in xl, whereas 2, and 6,  are both even functions of xl. 

Combining (29), (31) and (32), the O(h) force contribution can finally be 
written in the form, suitable for computation, 

and 

The coefficients Pzik and Qijk are complicated functions of the various integrals 
of table 1, as well as x,  and x,. 

7 Tables containing the specific relationships between the coefficients Cii, Dt j ,  Ei j ,  and 
Elijk: [and Pijk and Qijk in (35) below] and these integrals may be obtained on request from 
either the author or the JFM Editorial Office, Department of Applied Mathematics and 
Theoretical Physics, Silver Street, Cambridge CB3 9EW. 
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In  general, to evaluate (33) it is necessary to specify the detailed particle 
geometry. However, the assumed axisymmetry of the particle allows some 
immediate progress without specifying either the geometry or the precise 
functional forms of the various coefficients in Hi and t i .  In  particular, terms in 
the integrands in (33) which are odd in x2 or x3 will clearly integrate to zero for 
axisymmetric particles. The coefficients A ,  B and C in (34c) are independent of 
x2 and x3. On the other hand, C3i, D3i, E3ii, Gii, Plik, PZjk, Qlik and QZjk are all 
odd in xp, while P33k and Q33k are even in x3 but multiplied by sin q5 in the general 
relation (35). It thus follows that 

FL1’ = 0 (36) 

for any axisymmetric particle. Hence, as expected from considerations of sym- 
metry, an axisymmetric slender particle which is sedimenting without rotation 
through an otherwise quiescent fluid will experience no lateral (sideways) force 
regardless of its detailed geometry, or its inclination to the horizontal. 

The components Pi1’ and Pi1) are, in general, non-zero. However, for the special 
case of axisymmetric slender particles with fore-and-aft (end-to-end) symmetry, 
careful term-by-term examination of the integrands in (33) for ,j = 1 and j = 2 
yields the further important result 

@) = P‘1’ 2 = 0, (37) 

For the sake of brevity, the detailed proof of (37) will be omitted. In  general 
terms, however, it is found that those parts of the integrand in (33) which are not 
odd in either x2 or x3 are inevitably odd in x1 and so vanish upon integration 
owing to the additional assumption of fore-aft symmetry. Taking (36) and (37) 
together, it is clear that in these circumstances&here is no O(h) contribution to 
the hydrodynamic drag, in spite of the non-trivial modifications to the fluid 
velocity and pressure fields which occur at  the same order. In  this, the motion of 
a long slender axisymmetric particle with fore-aft symmetry is qualitatively 
similar to the motion of a rigid spherical particle, which was discussed in the 
introduction. However, this feature of the rheologically slow motion of isolated 
rigid particles does not carry over to the more’ general case of axisymmetric 
particles which have no fore-aft symmetry, as we shall now discuss. 

When the particle does not exhibit fore-aft symmetry, it is necessary to 
evaluate the integrals in (33) explicitly. Although this would be difficult for 
particles of general shape, the task is simplified considerably for the special case 
of very long slender particles. The surface integrals are simplified by the fact that 
the integrand is evaluated at  the particle surface rs = R(xl) < 1, where the 
asymptotic forms valid for r < 1 (1 & xl) 1 may be used for the various coefficients 
Pijk and Qijk .  Although these asymptotic estimates generally do not hold within 
O(e)  of the particle ends, the integration over x1 can be limited to the subdomain 
- 1 + e < x1 < 1 - e with a relative error O( I/ln e), which is negligible a t  the level 
of approximation considered here. The volume integrals are also simplified since 
they are increasingly dominated by the contribution from the region 

- 1 + e < x 1 < 1 - e ,  r < l  
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as the particle becomes increasingly slender. The proof of this fact is not difficult 
in principle, involving only the asymptotic evaluation of the integrand for the 
various regions of 5. It is sufficient for our purpose to note that the next largest 
contribution comes from the small region within O(e) of the ends of the particle. 
This contribution is again asymptotically smaller than the major contribution by 
O( l/ln e )  for e < 1. We shall be content here to obtain only the limiting asymptotic 
estimate of the integrals in (33) for small e,  which may be calculated by neg- 
lecting all contributions other than those from the subregion - 1 + E  < x1 < 1 - 6, 

R(xl) < r < cl. The constant c1 is kept fixed and small (< 1), as E +  0, but is 
otherwise arbitrary. 

Hence, evaluating the integrands in (33) for rs = R(xl) < 1 and r < (1 -xJ, 
(1 + xl), respectively, and integrating over q5 from 0 to 2n, we obtain the following 
asymptotic results: 

322, 32X1'& + I l l n - -  4e G R2(x1) 96x1s1n^, 
+ / ~ ~ ~ € [ ( ~ - R ( x 1 ) ( l - x : )  R2(x1) 4(1-x:) R(x1)(1-x:) 

x--( fio)a 8R(xl) (6x1 + 2xT) n^, 
(In ~ ) 2  (1 - x33 

?L1--- 
* 

G 2 ] ]  R(xl) dxl, 

In  order to simplify the integrands, we have used the relationships G, = G,, 
x2 = r cos 4 and x3 = r sin 4. To proceed further, we must specify R(xl). 

Here, we briefly consider only the single example of the cone-shaped particle 
sketched in figure 3, for which 

Wl) e(x1 + 1) (40) 

and E = &Ro, in the range - 1 + e < x1 < 1 - e. Using this shape function together 
with the equations (9) and (10) for fro) and no), and the expressions (23) for 9: 
and #;, equations (38) and (39) yield the asymptotic results 

Pi1) = n,uU*l[ - 2 cos2a - el($ sin2a)]+ O(1/lne), 

= 7r,u U*I[ - 7e1 - Q] sin a cos a + O( 1 /In e )  . 
(41 a )  

(41 b )  
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s 

FIGURE 3. A circular conical particle sedimenting through a quiescent fluid. 

Thus, if the cone axis is vertical, so that a = 0,  h e  contributions Fie' and F f )  
vanish identically, while 

F, = 4n~lU*/lne-2npU*lh+O(h2). 

For most viscoelastic fluids, measurements indicate that h > 0 and he, < 0 with 
]ell N 0.5 (cf. Caswell & Schwarz 1962). Hence, the drag force is increased by 
the non-Newtonian contribution when the particle translates with the sharp end 
trailing. With the sharp end leading, a = n and 

Fl = - [47rpZU*/lne + 2npU*lh] + O(h2). 
Hence, in this case the drag force is decreased. In  contrast, when the cone axis is 
horizontal, so that a = in, the non-Newtonian contribution FL1’ in the direction 
of motion vanishes identically. On the other hand, Fll), corresponding to a side- 
ways ‘drift’ in the direction parallel to the axis of revolution, has a non-zero 
first-order non-Newtonian contribution: 

Fl = hFi1)+O(h2) - -+~~h~pU*ic l+O(h~) .  
If he, < 0 ,  as indicated by experimental measurements, then Fl > 0 for motion 
either upwards (a = -in) or downwards (a = Bn). Thus, a freely suspended 
horizontal particle would experience a slow lateral drift in the direction of the 
blunt end. 
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The torque on the particle 
The hydrodynamic force on a translating, but non-rotating axisymmetric 
particle depends on its orientation at  both O(1) and O(h).  Thus it is important 
to  determine whether the particle has a preferred steady-state orientation. One 
means of obtaining this information is to calculate the torque - G at each pos- 
sible orientation which must be applied to keep the particle from rotating. In  
a Newtonian fluid at zero Reynolds number, the result is G = 0. Thus, in a 
Newtonian fluid the particle experiences no hydrodynamically induced torque 
and its orientation is fixed for all time by its initial orientation: no orientation is 
intrinsically preferred over any other. 

The first non-Newtonian contributions to the torque are obtained from (24) 
and (25): 

The general form for Hi is again given by (30)) while ti, is obtained from ( 2 2 )  
(ti, = wik) with the Stokeslet distribution 2; [equation (27)] substituted for 22. 
The position vector r expressed in terms of the particle-fixed co-ordinates is 

r = xl i, + R(x,) cos q5i2 + R ( x l )  sin $i3. (43) 

As in the case of the force, the general symmetry properties of the integrands 
in (43) allow some progress toward calculation of Gil) for axisymmetric particles 
without explicit specification of the particle geometry. 

In  particular, systematic evaluation of the integrands in (42) for both i = 1 
and i = 2 shows that every term is odd in either x2 or x3 (i.e. cosq5 or sin q5). Thus, 
for all axisymmetric particles, * 

Gil) = Gp) = 0. (44) 

Thus, as expected from considerations of symmetry, a general axisymmetric 
particle translating through a quiescent second-order fluid shows no tendency, 
at the second-order fluid level, either to rotate about its axis of revolution or to 
rotate out of its initial plane of motion (i.e. the x,, U plane). 

The component Gil) is given by 

(45) [ - R cos $tl + Xlt2] dA. 
+JS 

The general form of the vector function t is unchanged from that in (35)) however 
the integrals A ,  . . ., M (table 1) which originally appeared in the coefficients Pijk 
and Qijk must be replaced in this case by the integrals 2, ..., i@ (table 2 ) .  The 
coefficients and B are evaluated in table 2. In this case, not all of the terms are 
odd in x2 or x3, and G$l) is non-zero for a general axisymmetric particle. Never- 
theless, some simplification of (45) is still possible for axisymmetric particles. 
In particular, all the terms involving tio)’, f2(O”, Cz2, D2,, C,, and D,, are odd in 
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K 
B 

Asymptotic form 
( - 1 < x < 1, r -=g 1 except 

for r < 2 -  1, z+ 1) 

- x: In [r2/4( 1 - 271 
22/74 
- 2 -In [r2/4( 1 - 333 
- 2 In [r2/4( 1 - a2)] 
42/3r4 
2/3r2 
2x/3rZ 
- 222/( 1 - a2) - $In [r2/4( 1 - 2 3 3  
16x/15rs 
4/15r4 
421157.4 
2/5r2 
2x/5r2 

TABLE 2 

either x2 or z3 and hence produce no contribution to (45). To proceed further it is 
necessary to consider the remaining terms in detail. 

The dominant contribution to the remaining integral over V, comes from the 
region - 1 + E  < x1 < 1 - B ,  r = O(e) < 1. Furthermore, it can be shown that the 
terms in this integral which involve U, and U, explicitly are asymptoticalIy smalI 
compared with those involving fio”f$o). Finally, the contribution of the surface 
integral is smaller than the dominant contribution of the volume integral by 
O( l/ln 8 ) .  Hence, neglecting both of these contributions, substituting for pi3), 
fro) andfiO) in the remaining terms from (9), (10) and,(27), and finally, integrating 
over (p, we obtain the result 

hpU*12n sin a cos a!’ -‘ dxl/i(z,)  r dr 
16(ln B ) ~  - l + E  

G3 = hGil’ + O(h2) N 

To obtain quantitative results, it is necessary to specify the geometric shape 
function R(x,) for the particle. More important, however, are the general qualita- 
tive features of (46). First, there is a non-zero torque on the body for all angles of 
inclination except a = 0 and in, for which the particle is oriented with its axis 
of revolution either vertical or horizontal. For all angles other than 0 and in, 
a torque - (r, would have to be applied to the particle to keep it from rotating. 
Hence, free fall with no externally applied torque, an axisymmetric particle 
with fore-aft symmetry would rotate towards one of the orientations of zero 
torque, a = 0 or in. 

To determine which of these two possible equilibrium orientations is stable, 
it is necessary to determine the sign of the total coefficient of sinacosa in (46). 
Since the integrand is positive definite, this may be easily accomplished without 
specifying any particle geometry function R(x,). As we have already indicated, 
it is commonly accepted that h > 0 and he, < 0 for most viscoelastic fluids 
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(cf. Caswell & Schwarz 1962). In  addition, Ins < 0 for E < 1. Expressing G3 in 
the general form G, N C sin a cos a + O(A2), (47) 

it thus follows that the coefficient 

is strictly negative. Referring to figure 1, it  may thus be seen that a = 0 is stable 
while a = in- is unstable to small disorientations. Therefore, in the steady state, 
an axisymmetric slender particle will fall with its axis of revolution vertical. 

So far as we are aware, there exist no published experimental observations 
which can be compared with the predictions of the present theory. In  the 
appendix of this paper we report on some preliminary experiments which appear 
to confirm the theoretical prediction of a vertical stable equilibrium orientation 
for free sedimentation of slender cylinders and cones. A more systematic and 
careful experimental investigation is currently in progress. 

6. Rotation of a neutrally buoyant particle in a simple shear flow 
Predictions of the theoretical analysis 

We now turn to the angular rotation of a neutrally Euoyant, axisymmetric 
particle with fore-aft symmetry in a simple shearing motion of a second-order 
fluid. By restricting attention to particles with fore-aft symmetry, we avoid the 
possibility of shear-induced migration across the flow, so that the particle trans- 
lates with the local undisturbed velocity of the suspending fluid, as implicitly 
assumed in (12). 

Cox (1970 a )  employed slender-body theory to investigate the motion of an 
axisymmetric particle with fore-aft symmetry in a simple shear flow of a 
Newtonian suspending fluid. According to Cox's theory, the torque required to 
produce dimensionless angular rotation rates w2 ( = w!Jy) and w3 ( =  wA/y) is 

(48) I G(2O) = &mpP(ln~)-l(sin8, cos2 fi, - w2),  

= #yn-pP(ln €)-,(sin 8, cos 8, sin $1 cos 4, - w3),  

in which Z is the length of the particle and y the undisturbed shear rate. Hence, in 
a Newtonian fluid, a particle free from any externally applied couples 
(GP) = GP) = 0 )  will rotate with dimensional angular velocity components 

0;. = y sin 8, cos2 

q& = y cos2 $,, 6, = y sin 8, cos 8, sin fil cos 9,. 

w i  = y sin 8, cos 8, sin fil cos +y (49) 

(50 )  

The rates of change of the polar angles 8, and #, follow directly from (49) as 

These expressions for 4, and 6, are the familiar Jeffery (1922) orbit equations 
for a spheroid of infinite aspect ratio. 

In  the case of slow motion in a second-order fluid, the torque Gi may be 
expressed as an expansion in the small parameter A:  

G, = Gio' + AGP) + O(A2). (51) 
21 F L M  69 
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To evaluate the non-Newtonian contribution at  O(h) ,  i.e. GPl, we again use (24) 
combined with the reciprocal theorem (25). The vector functions H and t which 
appear in the equation (42) [see also (45)] for Gil) are both evaluated using 
u, = - U+v(O) with the undisturbed velocity field - U obtained from (12) and 
the disturbance field do) calculated using the Stokeslet distribution from (15). 
As in the previous examples, the surface integrals appearing in the equations 
for Gi!) are evaluated using the asymptotic forms of the integrand for 
r = R(xl) 4 1. Likewise, the volume integrals are dominated by the region very 
near to the particle but excluding the two end regions - I + e 6 x1 6 1 - e, r < 1. 
Since we have restricted our attention to the case of axisymmetric particles with 
fore-aft symmetry, terms in the integrands which are odd in any of xl, x2 (i.e. 
cos q5) or x3 (i.e. sin q5)  produce a zero net contribution to the torque Gil). The 
detailed evaluations of the integrals are lengthy and of no special interest in 
themselves, thus we omit them here7 and simply report the resulting asymptotic 
expressions for GL1) and GL’): 

Here, 

When evaluated using the definitions for fp) and Aij  and combined with the 
Newtonian equation (48), these equations yield explicit relationships between 
the hydrodynamic torque, particle geometry and the polar orientation angles 
8, and The general form is$ 

G, $npz3y(in e)-l{sin 8 cos2 &- W ,  + K [ ~ , h , ( ~ , ,  q51, w,, w3)  

f (Mz/lne) hz(8i) $1) %)I + O ( - W )  (54) 

and Q3 - $npPy(ln e)-l{sin 8, cos 8, sin $1 cos q51 - w3 + KIH1 h3(81,@1, w2, w3)  

f (M2/lne)h4(81, $1) %&)1 -I- O(K2)) ,  ( 5 5 )  

where 

author or the JFM Editorial Office. 

the JFM Editorial Office. 

K = 3hy/16(lne) < 1.  

7 The detailed results of these calculations may be obtained on request from either the 

1 The functions h,, h,, h, and h, may be obtained on request from either the author or 
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The functionsM, and M2 depend explicitly on the shape function R(x,). However, 
it is sufficient for present purposes to note that 

M, > 0, M2 < 0 in the limit €- to .  
Now a particle which is free from any externally applied body couples will 

rotate at  a rate (w2, w3)  such that (7, = G3 = 0. Since K appears as a small para- 
meter in the system (54) and (55), we can obtain an asymptotic estimate of the 
non-Newtonian modification of the dimensionless angular velocities of a freely 
suspended particle by expanding w2 and w3 in the form 

The zeroth-order (dimensional) terms and w$O) are simply the Newtonian 
solutions given by (48). Substituting (56) into (54) and (55) and collecting terms 
O(K),  the first correction is easily shown to be 

(57) 1 w f )  N Nl( i + Zs,) sin3 8, sin 6, cos $,(sin2 $, - cos2 (6,)) 
up’ N -Ml( 1 + Z E , )  2 sin3 8, cos 8, sin2 $, cos2 $l. 

Using these expressions, the ‘orbit’ equations (50) are thus modified to the form 

4, N y 0082 $, + KM,(~  + 2.5,) y sin2 8, sin $, cos $,(sin2 $, - cos2 4,) + O ( K ~ ) ,  

(58 a )  
8, N y sin 8, cos 8, sin $, cos 4, 

- 2KM1( 1 + 2s,) y sin3 8, cos 8, sin2 $, cos2 $1 + O(K2) .  (58 b )  

For the case of a Newtonian suspending fluid, K 2 0, these equations may be 
integrated to obtain 

tan $, = yt, tan 8, = C/cos $,, (59 a, b )  

in which C is the so-called Jeffery orbit constant, which can assume values 
between 0 and 00 depending upon the initial orientation of the particle. Although 
a similar inversion of (58) has not been found for non-zero values of K ,  a simple 
transformation of the equations to the natural C ,  T system of Leal & Hinch (1971) 
does allow a straightforward illustration of the predicted modifications of the 
particle motion. Thus we use 

T = tan$,, C = tan8,cosq5, 

and transform (58) according to 

drldt = see2 $, 4,) (goal 

(60 b )  dC1d.r = see2 8, cos 4, 6, - tan 8, sin 6, 4,. 
The result is 

drfdt = y + KMl( i + 2s1) y sin2 8, tan $, (sin2 q5, - COS~$,), 

dC/dt = - KM,( 1 + 28,) y sin2 8, sin2 

(61 4 

(61 b )  C. 
21-2 
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The first of these equations describes the change of phase of the particle axis with 
time, whereas the second describes the rate of drift of C. The behaviour of the rod 
depends critically upon the sign and magnitude of the coefficient KMl( 1 + 2s1) y 
(hereafter denoted as by).  Since h > 0 and < 0 for most common viscoelastic 
fluids, it follows that Krill y < 0 for E < 1. Quantitative rheological information 
relevant to the coefficient 1 + 2e1 is more difficult to obtain. Experimental evi- 
dence available in 1962 led Caswell & Schwarz to support the validity of the 
so-called Weissenberg (1947) hypothesis, according to which the two normal 
stress components orthogonal to the direction of flow are equal in simple shear, 
so that 

Clearly, for a true Weissenberg fluid p = 0, and the orbit constant and the rate 
of rotation through the orbit, as predicted by (61), would be unchanged from the 
Newtonian case, i.e. drldt = y and C = constant. However, more recent studies, 
for example, the experimental measurements of Olabisi & Williams (1972), 
Tanner (1970), Wales & Philippoff (1973), Brindley & Broadbent (1973) and 
others, as well as the majority of model studies of particulate suspensions 
(cf. Hinch & Leal 1972; Leal & Hinch 1972; Frankel & Acrivos 1970; Lin, Peery 
& Schowalter 1970) appear to support the proposition that the second normal 
stress difference is not zero, but small in magnitude compared with the primary 
normal stress difference and of opposite sign. In  this case, 

El = -Q. 

€l < -Q (62) 

and KMly(l  + 2e1) > 0. According to (61 a ) ,  a rod-like particle in a non- 
Newtonian second-order fluid which satisfies (62) should rotate into the aligned 
state (q51 = in-, $ 7 ~ )  a little faster than in the corrqsponding Newtonian fluid, but 
come out a little s1ower.t We shall later show, by taking higher-order corrections 
to (49), that the rate of change d1 of the phase angle actually exhibits a stable 
zero for shear rates above a certain critical value, corresponding to alignment of 
the particle with a fixed preferred direction. For smaller shear rates, (61 b )  
indicates that C should decrease towards the equilibrium value C = 0, with the 
maximum rate of change of C occurring when $1 is near 4;. or I;.. 

Comparison with experimental observation and discussion 
Karnis & Mason (1967), Gauthier etal. (1971) andBartram &Mason (1974) have 
recently made a careful and thorough experimental investigation of the rota- 
tional motion of rod-like particles of finite aspect ratio in simple Couette flow 
using bo6h pseudo-plastic (purely viscous) and viscoelastic suspending fluids. At 
small shear rates y, Karnis & Mason and Gauthier et al. found that both rods 
and disks rotated in either type of fluid with a period which differed very little 
from the Jeffery-orbit value for a rod or disk of the same finite aspect ratio in 

t Strictly speaking, the long slender rods (r  = co) which we have considered do not cross 
the aligned state at all as we have noted earlier. However, for purposes of the present dis- 
cussion, we shall assume that any particle which arrives at = +T or *T with 8, = +T will 
cross as a result of  the small torque O(e2) which exists there (Cox 1970b), but which is outside 
the scope of  the present slender-body analysis. 
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a Newtonian fluid. In  a Newtonian fluid the particles rotate about fixed orbits C. 
However, a t  moderate to small shear rates in both pseudo-plastic and visco- 
elastic fluids, Gauthier et al. and Bartram & Mason found that a reasonably rapid 
drift to C = 0 occurred in every case for rod-like particles, with the largest 
changes in C occurring when $, was within & 10" of Qn or $n. In  addition, for 
moderate y, Bartram & Mason reported periods of rotation for both rods and disks 
in a 25 % polyacrylamide ( P a )  in water solution which were markedly greater 
than those predicted by the Jeffery theory. Finally, above some critical shear 
rate, Bartram & Mason reported that sufficiently long rods in viscoelastic media 
appeared to align permanently with and 8, both very near to in. For these 
supercritical shear rates, orbit drift to C = 0 was also sometimes observed, but 
only after the 'permanently' aligned particle was subjected to an extra disturb- 
ance such as that caused by interaction with a second nearby particle. Qualita- 
tively, these observations of orbit drift and the predictions of (61 b) ,  as outlined 
in the previous section, show a remarkable degree of correspondence. The only 
previous theoretical analysis (Saffman 1956) not only fails to predict any of the 
detailed variations in the rate of change of C with orientation ($,), but also 
produces no criteria to determine whether C should increase or decrease in time. 

A more quantitative comparison between theory and experiment is difficult, 
because the experimental particles have a finite axis ratio and thus rotate periodi- 
cally through $, = 0-2n, whereas the particles of ipfinite axis ratio considered 
by the theory align with no further rotation near $, N Qn or @ even in the 
Newtonian limit,. In order to achieve periodic rotation (58) must be modified to 
account for the small but non-zero torque acting on the particle when 
4, 2: Qn(2n + 1) (where n is any arbitrary non-negative integer). To do this in 
a rigorous way, both the basic Newtonian and qon-Newtonian slender-body 
solutions would have to be modified to account for higher-order, O(@),  effects. 
The Newtonian result is easily obtained from the exact Jeffery-orbit equations 

and 6, = y(r2 - I)  sin 8, COS 0, sin 4, cos r2+ 1 

Letting r --f 03, these reduce to the slender-body equations (50) for a Newtonian 
fluid, except for $, N Qn(2n + i), when 

This small O(+) term is precisely the higher-order correction term which would 
be obtained, for a Newtonian fluid, from the slender-body analysis which we 
have rderred to above, and which is responsible for the slow rotation of a real 
particle in a Newtonian fluid through the aligned positions g5, N in(2n+ 1) .  
A useful and uniformly valid first approximation to the orbit equations in the 
Newtonian case may thus be obtained simply by combining the first-order 
slender-body equations (50) with the expression (64) in the form 

d l  Y k 2 .  (64) 

dl N y(cos2 $, + r-21, 

6, N y sin 8, cos 8, sin $, cos 4,. 
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As a test of the accuracy of these equations for r = 16.1 (the value used by Mason 
and co-workers in many of their non-Newtonian experiments) we have integrated 
them numerically using a simple Runga-Kutta scheme, and compared the 
results with similar calculations based on the exact equations (63). The detailed 
orbit shapes are nearly identical. In  addition, the orbit period T’ for these 
approximate equations, 

compares favourably for r = 16.1 with the exact theoretical result 

T = (2n/y) ( r+r- l ) .  

In  the case of a second-order suspending fluid, an additional non-Newtonian 
correction to the orbit equations (58) would be expected at O(he2) as we have 
indicated above. However, since the exact orbit equations are not known in this 
case, we a t  present have no practical way of estimating this additional correction 
term. In  spite of this, we have felt it useful, in qualitative terms, to proceed 
with the numerical and analytical evaluation of (58) for various values of p, 
using (64) as an approximation for q$ when $, N 4742% + I ) ,  i.e. 

dl N y(cos2 q51 + r2) + By sin2 8, sin #, cos #,(sin2 $, - cos2 $,), 

0, N y sin 8, cos 8, sin 
(66 a) 

(66 b )  cos $, - 2y,8sin3 8, cos 8, sin2 $, cos2 4,. 
In  the remainder of this section, we describe the results of these calculations. 

Two features of the particle motion in the second-order fluid are of special 
interest: the gradual drift through Jeffery orbits and the variation in the phase 
about the ‘orbits’ with time, particularly the existence of a permanent or nearly 
permanent stable orientation for large shear rates y. 

We begin by examining (66a) for the possible existence of an orientation of 
permanent alignment for large shear rates. Thus we put 9 = 0 and search for 
real roots of the resulting transcendental equation in dl, for fixed values of el.? 
The problem is simplified by anticipating from Bartram & Mason’s experiments 
that these roots will be near to $1 = gn, #n. Hence, introducing the simple trans- 
formation 4,  = &T + $‘ and noting that $‘ < I, (66 a )  with dl = 0 may be approxi- 
mated by the simple quadratic form 

which has roots 
0 = Y [ $ ’ ~  -psin2 O1(q5’ + O($I3))  + r-2 + 0($’4)], 

$’ = +[psin2 8, ? (p2 sin4 el - 4/r2)9]. 

(67) 

(68) 

The condition for the existence of physically realizable stationary points is that 
these roots be real, namely 

p sin2 el 2 2/r. (69) 

When this condition is satisfied, both roots are positive and it is easily shown that 
the smaller of the two is a stable equilibrium point of (66 a) ,  The physical signifi- 

we shall show that t Although the zeros of 6, do not coincide precisely with those of 
the stable zero of provides an adequate condition for permanent alignment. 
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cance of (69) is most easily shown by substituting the definition .KIM,( 1 + Zs,) for p, 
and evaluating Nl using R(x,) = s( 1 - x:)3 to give 

The minimum or critical value of y, for 4 = 0, occurs for 8, = &, 

and the corresponding angle of alignment cjLr is 

cjir = I/r .  (71) 

In  relating the prediction of a critical shear rate for dl = 0 to the experimental 
observation of ‘permanent’ alignment by Bartram & Mason (1974)) it  is critical 
to note, first, that 6, - (cl sin 8, cos 8,) r-8 

for y = ycr, and second, that for r 1 nearly all of the possible Newtonian orbits 
pass within O(r-l)  of the wholly aligned state (8, = #, = Qn-). In  the latter region 

6, N O(r-%)t 

and the experimental observation of permanent alignment for sufficiently large 
shear rates is thus qualitatively indistinguishable -from the predictions of the 
present theory. A more detailed comparison with experimental results wilI be 
presented a t  the end of this section. 

A definitive explanation of the further observation of Bartram & Mason that 
particle interactions or other disturbances to the flow could cause the particles 
to resume their angular motion and drift into thembit C = 0 is, of course, not 
possible in the context of the present theory. Nevertheless, a qualitative under- 
standing of the phenomenon appears possible. Since the particles remain more 
or less permanently aligned, disturbances associated with particle interactions, 
or other random phenomena such as rotary Brownian mbtion, obviously have 
their greatest influence on particles which are in the aligned state. A small 
random rotation away from the aligned state may either transport the particle 
to a new orbit which also passes through a position of stable alignment or, if the 
rotation is near to the x, z plane of figure 2, onto an orbit which crosses the x, z 
plane with 0, outside the domain of stable orientations. The role of the disturb- 
ance rotation, which Bartram & Mason (1974) have found to be critical to the 
initiation of orbit drift a t  large shear rates, is simply to provide a mechanism for 
transfer into orbits (small C) which ‘miss’ the aligned state. When this happens, 
the subsequent orbit decay to C = 0 takes place in the manner described by (61 b).  
One implication of this idea and the sin20 dependence of (68) and (69) which 
could be checked experimentally is that an increase of y above the critical value 
should lead to a weak smearing of the set of aligned orientations over an increasing 
portion of the x, z plane (i.e. a greater range of 8,). To date, there are no experi- 
mental results of which we are aware to either confirm or refute this prediction. 

7 Note, 8, = 0 for O1 = +r. 
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Time ( s )  

FIGURE 4. Change in the orbit constant C as a function of time for /3 ranging from + 0.025 to 
$0.25 in increments of +0.025; C, = 1.8, r = 16-1 and y = 0.53 6-I. 

When y < ycr, or if C is sufficiently small, the particle motion is periodic and 
characterized experimentally by the phenomenon of orbit drift. We begin our 
study of this regime of smaller shear rates by considering the variations in 
particle dynamics as a function of ,!3 for y = 0.53 s-l and r = 16.1. These values 
for y and r were chosen to provide direct comparison with the available experi- 
mental results of Gauthier et al. (1971). Equations (66) were integrated numeri- 
cally to determine 8, and q5, as functions of time for various values of ,!3. The orbit 
constant corresponding to a given point (O1, q5,) was then calculated using the 
definition 

C = tan 8, cos q5,( 1 + r - 2  tan2 q5# (72) 

relevant to particles of finite aspect ratio. The term proportional to r-2 is, of 
course, negligible for r > 1 provided that q5, is not too near gn(2n + I). In  this 
case, C - tan 8, cos q51. However, initial calculations with p = 0 showed C to vary 
widely when this limiting expression was used, but to remain constant to within 
0.1 % over three complete orbits (q51 increasing from 0 to 67~) with (72). Gauthier 
et al. (1971) have plotted experimentally determined values for log (C/C,) 
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FIGURE 6. Period of rotation = 0-27r) as a function of /9, 

C,= 1.8, r = 16-1 and y = 0.53 SKI. 

as a function of time for y = 0.53s-1, Co = CIt=, = 1.8 and r = 16-1 for a 
3 % polyacrylamide-water solution. The data fell approximately on a straight 
line over a period of about two complete rotations (in 4J.t Since the particle 
spends the majority of each orbit period with - gn(2n + l ) ,  this result implies 
that the rate of orbit drift is independent of for q51 near the aligned state. 
We have calculated C as a function of time from the present theory, as described 
above, for values of ,!3 ranging from 0 to + 0.25 in increments of 0-025, and Go, r 
and y equal to the experimental values of Gauthier et al. (1971). The results are 
shown in figure 4 as a semi-log plot of C/C, vs. time. In  each case, the curve was 

t Professor Mason has indicated, in private correspondence, that the time scale of figure 9 
in Gauthier et al. (1971) should be doubled. 
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FIGURE 6. A comparison of the measured and calculated rates of change of the orbit 
constant for /3 = 0.037; C, = 1.8, T = 16-1 and y = 063s-l .  - , present theory; 
_-- , experiment, Gauthier et al. (1971). 

plotted over two complete rotations in $I (from 0 to 477). For the smallest value of 
/3 ( = + 0.025) the decrease in GIG',, with time is nearly linear (on this semi-loga- 
rithmic plot) over two rotations (orbits), though a smaller-scale wiggle super- 
imposed on the main linear variation is clearly evident. As implied above, this 
small-scale structure is primarily a reflexion of different rates of drift for different 
values of near Qn(2n + 1). In particular, careful study of the curves of figure 4 
shows that the secondary wave pattern is a result of more rapid orbit drift in the 
post-aligned orientations still approximately Qn) than in the approaching 
angles. For larger values of /3 the wiggles in the curves are magnified, reflecting an 
increased bias toward post-alignment drift and there is a marked fall-off in the 
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FIGURE 7. A comparison of the detailed particle rotation as obtained by the projection of 
the end of the particle onto the plane of the shear flow (2, y); C, N 2.176, p = 0.037, 
r = 16.1, y = 0.53 s-l. - , Jeffery orbits as calculated from (634; ---, experimentally 
measured orbits in 2.5 yo PAA, Gauthier et al. (1971); (3, theoretical orbits as calculated 
from (66).  The points are equally spaced in time with an increment of 0.75 s between 
successive points. 

rate of decrease of C/C, for the larger times (or equivalently, for the smaller 
values of C). Also noteworthy is the obvious fact that the dependence on ,!? 
becomes weaker as ,!? is increased, particularly for large times (small C ) ,  where 
all the curvm for /3 between + 0.15 and + 0.25 are very close together. Finally, 
a compwison of the various curves for different values of ,!? indicates a clear 
increase in the period of rotation for increasing ,!?. This last feature is explicitly 
illustrated in figure 5 ,  where we have plotted the elapsed time for an increase of 
#,from 0 to 277 as a function of ,!? for C, = 1.8, y = 0.53 s-1 and r = 16.1. It should 
be noted, however, that the change in period with increasing p is a strong function 
of C,, being nearly independent of ,!? for C, < 0.18. 

The value of ,!? which provides the best match between the experimental and 
theoreticalvaluesof log ( C/C,) as a function oftime is ,!? = + 0.037. The correspond- 
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ence between experiment and theory for this value of p is illustrated in figure 6. 
The only additional quantitative data presented by Gauthier et al. (1971) are 
for the projection of the end of the axis of revolution onto the x, y plane. 
Unfortunately, however, the precise projection is quite sensitive to the initial 
value of C,  which is not stated. In order to provide an approximate comparison, 
we have estimated C, N 2.176 a t  the second crossing of q51 = 0 from their 
figure 7 (b).  The x, y projection of the particle axis as it rotates through q51 from 
0 to 577 was calculated using (66) for y = 0-53s-l, r = 16.1, C, = 2.176 and 
j3 = + 0.037 and the results superimposed onto a plot of the various Jeffery orbits 
and available experimental data (figure 7). Most clearly evident, on comparing 
the calculated Newtonian and non-Newtonian orbits, is the fact that the major 
deviations between the two occur for N in(2n + 1) .  Hence, as we have indi- 
cated earlier, little orbit drift occurs except near the aligned orientations, 
q51 = +, gn-. Furthermore, the skewness in the rate of orbit drift between pre- 
and post-alignment values of q51 is also evident from the relatively small devia- 
tions from the Newtonian orbits for q51 < in-, @r (but near these values), and the 
large deviations for q51 > Qn-, $n-. Of greatest significance, however, is the excellent 
qualitative agreement with the experimental projections of Gauthier et al. (1971). 
Although the small scale of their figure 7 ( b )  makes comparison difficult, we have 
attempted to transpose their data onto our figure 7 for this purpose. It is our 
belief that the small apparent differences are a result, of limited experimental 
accuracy, possible error in the estimated value for C,,, and the fact that no 
systematic attempt was made to improve on the estimate j3 = 0-037 from 
figure 6. In  particular, the approximation inherent in the use of (64) does not 
appear to be a serious limitation for the theory. 

As a final point concerned with orbit drift, we add ?n addendum to a remark 
of Karnis & Mason (1967), who suggested that the rate of change of the orbit 
constant might prove to be a sensitive measure of ‘viscoelasticity ’. The present 
theoretical development does, in fact, indicate that the rate of orbit drift should 
be directly proportional to the parameter A( 1 + 2e1) of the Rivlin-Erickson 
constitutive model provided that the local fluid motion is rheologically slow as 
we have assumed. In  addition, the direction of change, i.e. whether Cincreases or 
decreases in time, depends upon whether 1 + 2e1 is positive or negative. Practi- 
cally speaking, the parameter Qz (proportional to slit) is relatively easily 
measured. Measurement of the parameter Q3, corresponding to the second 
normal stress difference in simple shear flow, is much more difficult as we have 
already noted. The present theory suggests that accurate observations of the 
motion of singlp particles in simple shear flow, particularly the rate and direction 
of orbit drift, can provide a sensitive measure of the second normal stress differ- 
ence parameter Q3, when coupled with an independent determination of Q2. We 
have noted above that KMl(l + 2e1) = 0.037 appeared to provide the best fit of 
experimental data on orbit drift for a rod-like particle of aspect ratio 16.1 in a 
3 % by weight polyacrylamide-water solution. For this system, Gauthier et al. 
(1971) made measurements of the shear dependence of viscosity and primary 
normal stress difference. Later, Bartram & Mason (1974) repeated these measure- 
ments using an orthogonal rheometer and a 2-5 % PAA solution. Substituting 
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the definitions of K ,  MI,  y and el (assuming R(xl) = e( I - x;)4) into the estimate 
KXl( 1 + 2e1) = 0.037 and rearranging gives 

Q3 = - 0*037(8,~)/y~ - 2QZ. (73) 

In  order to estimate Q3, it is necessary to use the rheological data of Gauthier et al. 
(1971) and Bartram & Mason (1974) to obtain p and Q2. By definition, for the 
second-order fluid limit, 

p lim (g12/y), 
Y-0 

Unfortunately, although the measurements of Gauthier et al. ( I  97 1)  and Bartram 
& Mason (1974) of viscosity us. shear rate agree, neither extend to sufficiently 
low shear rates to allow estimation of the lower limiting viscosity p. In  addition, 
not only do the normal stress measurements also not extend to sufficiently low 
shear rates, but the presumably more accurate data of Bartram & Mason (1974) 
are larger than those of Gauthier et al. by a factor of 20-60 over the range of shear 
rates used. Since Bartram & Mason's (1974) measurements were made for 2.5 % 
PAA, it is difficult to estimate appropriately corrected primary normal stress 
values for the 3 % solution. However, as a preliminary test of the basic idea of 
using orbit drift measurements to calculate Q3, we use estimated values of p and 
Q, at y = 0-53 s-l (the shear rate in the drift experiments). Accordingly, p - 65 P, 
while extrapolation of the ratio of the new 2-5 yo data and the original 3 yo data 
to y = 0.53s-l yields the estimate Q, N - 195dyne s2cm-,. Hence, from (72), 
the corresponding ' best-fit ' value of CD, is 321 dyne s2 0111-2. Thus el N - 0.6. This 
value corresponds to the second normal stress difference in simple shear flow 
being of opposite sign and having a magnitude equ'al to approximately 17 yo of 
the primary normal stress difference. Similar values have been reported by most 
recent investigators, and there is now general agreement that second normal 
stress differences are smaller and opposite in sign compared with primary normal 
stress differences in simple shear flow of viscoelastic fluids. Presumably, better 
estimates of Q, and p would lead to more definite results for Q3 (and hence el). 
Unfortunately, we know of no other measurement of el for this specific system 
(3% by weight polyacrylamide) which can be compared with our estimate. 

Finally, we return briefly to the phenomenon of permanent alignment for 
large shear rates, as described by (67)-(71). Clearly, careful measurement of ycr, 
the axis ratio r and the shear viscosity and primary normal stress difference 
provides an alternative measurement of Q3 through (70). Unfortunately, though 
Bartram & Mason demonstrated the existence of a critical shear rate for perma- 
nent alignment of rod-like particles iii a viscoelastic fluid, the maximum 
(effective) particle axis ratio which they employed was r = 6.27, too small to 
expect quantitative agreement with the present slender-body theory. Neverthe- 
less, we have felt it  useful to use the values of p, Q2 and Q3 obtained above to 
estimate ycr for comparison with the experimental value. Hence, substituting 
r = 6.27, p = 65, Q3 = 321 and Q, = - 195 into (70), we obtain, for 0 = Bn, 

ycr = 1.55s-l. 
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The value observed by Bartram & Mason (1974) was 5 s-l. Although the agree- 
ment is not particularly impressive, the rheological data we employed were for 
y = 0-5 s-l, considerably smaller than the calculated (and measured) critical 
shear rate. Furthermore, the theory is for a second-order fluid and a highly 
elongated particle while the measurements were taken well beyond the second- 
order fluid regime using a particle with r = 6.27. In  view of these facts, the lack 
of quantitative agreement is not surprising. Again, a careful and comprehensive 
set of experiments would be useful in verifying the various predictions of the 
theory . 

This work was supported by the National Science Foundation under grant 
GK-35468. The author wishes to acknowledge helpful discussions with Mr 
Bosco Ho and Dr E. J. Hinch on various aspects of this work. The Separan 
AP30 was donated by the Dow Chemical Company. 

Appendix. A preliminary experimental investigation of the motion of 
slender particles in Separan-AP30 

By L. G. LEAL AND E. ZANA 
Chemical Engineering, California Institute of %chnology, Pasadena 

As we have indicated in the body of the paper, some preliminary qualitative 
experiments were performed in order to provide a partial verification of the 
predictions of the present theory. In  view of the extensive studies in shear flow 
by Mason and co-workers the present experiment4 studies have been focused 
entirely on the translation of slender axisymmetric particles through a quiescent 
fluid. 

For this work we used two circular cylindrical particles with rounded ends, 
lengths 0-704 and 0*724in., and axis ratios of 28 and 66, as well as a circular cone 
with a length of 0.681 in. and a maximum diameter of 0.053 in. The shorter 
cylinder and the cone were machined from block aluminium, while the longer 
cylinder was cut from a piece of stainless-steel wire. The experiments performed 
were limited to sedimentation of a single particle in a Plexiglas tank which was 
18 in. in height and 6 in. square in cross-section. The fluids used were 99.5 yo 
glycerine (Newtonian), with a viscosity of about 15P, and a 0.5% solution of 
DOW’S Separan AP30, which has a similar value for its low shear limiting viscosity 
but is fully viscoelastic. Typical shear viscosity and primary normal stress data 
for Sepwan have been presented in a number of previous publications (cf. Skoog, 
Leal & Acrivos 1971; Bruce & Schwarz 1969) and so will not be repeated here. 
The sedimentation experiments were carried out by introducing the particles 
into the top of the tank with some predetermined orientation, and then observing 
their motion and orientation over a span a t  the midlevel of the tank using a 
strobatac light source in conjunction with a Graflex Crown Reflex Camera to pro- 
duce multiple-image photographs in which the successive images of the particle 
were separated by a known increment of time. 
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It was anticipated that wall-particle interactions might play a critical role in 
determining the particle motion in a tank of this size. Indeed, the very recent 
theoretical and experimental work of de Mestre (1973) for a Newtonian suspend- 
ing fluid had already suggested that the terminal velocity could be measurably 
affected for a ratio of particle length to tank width of the order of 0.05 or less. 
In  addition, de Mestre indicated that particle-wall interactions may cause the 
orientational behaviour of the particle to differ markedly from that expected in 
an unbounded body of the same Newtonian fluid. For this reason, experiments 
were carried out in both Newtonian and non-Newtonian fluids in order that the 
former might provide a frame of reference from which the explicitly non- 
Newtonian contributions to the particle’s motion could be clearly distinguished. 

In  the present work, we have attempted to verify only two qualitative predic- 
tions of the theory: first, that particles with fore-aft symmetry fall with a 
preferred vertical orientation in the steady state, and second, that cone-shaped 
particles tend to fall more slowly with the blunt end leading than with the 
pointed end leading. 

We first consider the results for particle orientation in a Newtonian fluid. In  
this case, we have found that the orientation remains fixed provided that the 
particle does not drift too close to the side walls of the tank. A typical multi- 
image photograph taken a t  the midlevel of the tank is shown as figure 8 (plate l), 
and illustrates the essential lack of change of particle orientation. The orientation 
shown is, in fact, within a few degrees of that initially imposed a t  the top of the 
tank. In  addition, it may be noted that the direction of fall is not vertical, but 
instead shows a significant sideways component across the plane of motion. This 
behaviour is expected as a result of the familiar 2 :  1 ratio of drag for motion 
perpendicular or parallel to the axis of a very slender particle in a Newtonian 
fluid. A simple calculation based on this ratio shows that 

tana  = 4 cot 6, 

in which S is the inclination of the particle axis and DL + S is the inclination of the 
path of motion, both measured from the horizontal plane. We have measured 
a and S directly from the photographs for a number of the Newtonian experi- 
ments. The results are shown compared with the theoretical expression (73) in 
figure 9. The small but consistent deviations between theory and experiment are 
caused by the finite aspect ratio of the particles, which would be expected to 
produce a drag ratio smaller than 2 : 1. Hence, although the sideways drift obvi- 
ously holds the potential for complicated particle-wall interactions as the 
particles drift jtowards a wall, the motion actually observed is indistinguishable 
on the scale of the present experiments from that for an unbounded body of fluid 
provided only that the particle is not too near a wall. 

The particle motion in Separan AP30 is markedly different, as may be seen by 
comparing the multi-image photograph of figure 10 (plate 1) for Separan with 
that of figure 8 for the Newtonian glycerine solution. In particular, the same 
particles which sedimented with constant orientation through glycerine were 
found in every case to rotate rapidly from their initial orientation to a vertical 
orientation when sedimenting through the Separan-water solution. It should be 



336 L. G. Leal 

0 1.5 3.0 4.5 

s 
FIGURE 9. Measured values of the inclination 6 of the particle axis to the horizontal v8. the 
inclination a of the path of motion to the particle axis. -, calculated using (73); 
0 , experimental points, present investigation. 

noted thrht figure 10 was, in fact, taken quite near the top of the tank since the 
re-orientation towards the vertical equilibrium position was generally complete 
by the midplane of the column. The re-orientation to vertical provides a strong 
confirmation of one of the principal predictions of the present theory. A more 
quantitative comparison of experimental results and the theoretical predictions 
of (47) will be presented in a forthcoming communication. 

A second set of experiments was carried out which was intended to test the 
theoretical predictjon that the terminal velocity of a vertically oriented cone 
would be smaller with its rounded end in the direction of motion than with its 
pointed end leading. The chief difficulty experienced with these experiments 
resulted from the' fact that the point-down orientation was only marginally 
stable for the cones which we used, so that the particle showed a strong tendency 
to flip over to the configuration with the rounded end leading. Only those few 
particles which were essentially perfectly vertical at  the beginning of the experi- 
ments actually remained in the point-down orientation to the midpoint of the 
tank, where the velocity measurements were made. The results were less conclu- 
sive than those of the previous paragraph. In  the Newtonian 99.5% glycerine 
solution, no statistically significant differences in terminal velocity could be 
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FIGURE 8. Mdtipk-irnltgc photograph of a slender rod-lilie'particle (T = FG) sedirnmtirig 
tlirough 99.5 0; glycorine. 

FIGURE 10. Multiple-image photograph of a slcrider rod-11kc pa r tdo  ( r  = G6) 
sediriicriting through 0.5 c% ICIepman AP30 in watcr. 
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ascertained between the point-up and point-down configurations. In Separan, on 
the other hand, a slight difference was apparent, with the particle falling mom 
slowly in the point-up configuration as predicted by the theory, However, it 
must be noted that the difference was small, only marginally greater than the 
maximum variations observed from run to run with a fixed orientation. We hope 
to improve the accuracy of these results in a future investigation. 
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